Gate-tunable heavy fermions in a Moiré-Kondo lattice

  • Stewart, GR Heavy Fermion Systems. Rev. Mod. Phys. 56755-787 (1984).

    Article ADS-CAS Google Scholar

  • Kirchner, S. et al. Colloquium: Heavy electron quantum criticality and single particle spectroscopy. Rev. Mod. Phys. 92011002 (2020).

    Article ADS-CAS Google Scholar

  • Paschen, S. & Si, Q. Quantum Phases Driven by Strong Correlations. nat. Rev. Phys. 39-26 (2021).

    Article Google Scholar

  • Coleman, P. Heavy fermions and the Kondo lattice: a 21st century perspective. Preprint at https://arxiv.org/abs/1509.05769 (2015).

  • Kennes, DM et al. Moiré heterostructures as a quantum simulator for condensed matter. nat. physics 17155-163 (2021).

    Article CAS Google Scholar

  • Mak, KF & Shan, J. Semiconductor Moire Materials. nat. Nanotechnology. 17686-695 (2022).

    Article ADS CAS PubMed Google Scholar

  • Maksimovic, N. et al. Evidence for a delocalization quantum phase transition without symmetry breaking in CeCoIn5. Science 37576-81 (2022).

    Article ADS CAS PubMed Google Scholar

  • Senthil, T., Vojta, M. & Sachdev, S. Weak magnetism and non-Fermi liquids near critical points with heavy fermions. physics Rev B 69035111 (2004).

    Article ADS Google Scholar

  • Vojta, M. Orbital selective Mott transitions: heavy fermions and beyond. J. Low Temp. physics 161203-232 (2010).

    Article ADS-CAS Google Scholar

  • Andrej, EY et al. The wonders of moiré materials. nat. Rev Mater. 6201-206 (2021).

    Article ADS-CAS Google Scholar

  • Andrei, EY & MacDonald, AH Graphene Bilayers with a Twist. nat. mater 191265-1275 (2020).

    Article ADS CAS PubMed Google Scholar

  • Cao, Y. et al. Unconventional superconductivity in graphene magic-angle superlattices. Nature 55643-50 (2018).

    Article ADS CAS PubMed Google Scholar

  • Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 Moiré superlattice. Nature 579353-358 (2020).

    Article ADS CAS PubMed Google Scholar

  • Regan, EC et al. Mott and generalized Wigner crystal states in WSe2/WS2 Moiré superlattice. Nature 579359-363 (2020).

    Article ADS CAS PubMed Google Scholar

  • Wu, F., Lovorn, T., Tutuc, E. & Macdonald, A.H. Hubbard model physics in transition-metal dichalcogenide moiré bands. physics Rev. Lett. 121026402 (2018).

    Article ADS CAS PubMed Google Scholar

  • Kumar, A., Hu, NC, Macdonald, AH & Potter, AC Gate-tunable heavy fermion quantum criticality in a Moiré-Kondo lattice. physics Rev B 106L041116 (2022).

    Article ADS-CAS Google Scholar

  • Guerci, D. et al. Chiral Kondo lattice in doped MoTe2/WSe2 double layers. Preprint at https://arxiv.org/abs/2207.06476 (2022).

  • Ramires, A. & Lado, JL Emulation of heavy fermions in twisted three-layer graphene. physics Rev. Lett. 127026401 (2021).

    Article ADS CAS PubMed Google Scholar

  • Dalal, A. & Ruhman, J. Orbital selective Mott phase in electron-doped twisted transition-metal dichalcogenides: a possible realization of the Kondo lattice model. physics Rev. Res. 3043173 (2021).

    Article CAS Google Scholar

  • Lied, Z.-D. & Bernevig, BA Magic angle twisted bilayer graphs as a topological problem with heavy fermions. physics Rev. Lett. 129047601 (2022).

    Article ADS MathSciNet CAS PubMed Google Scholar

  • Vaňo, V. et al. Artificial heavy fermions in a van der Waals heterostructure. Nature 599582-586 (2021).

    Article ADS PubMedGoogle Scholar

  • Li, T. et al. Quantum anomalous Hall effect made up of tangled moiré bands. Nature 600641-646 (2021).

    Article ADS CAS PubMed Google Scholar

  • Li, T. et al. Continuous Mott transition in semiconductor Moiré superlattices. Nature 597350-354 (2021).

    Article ADS CAS PubMed Google Scholar

  • Zhao, W. et al. Realization of the Haldane-Chern isolator in a moiré grating. Preprint at https://arxiv.org/abs/2207.02312 (2022).

  • Zhang, Y., Devakul, T. & Fu, L. Spin-textured Chern ribbons in AB-stacked transition-metal dichalcogenide bilayers. Proc. Natl. Acad. Science. USA 118e2112673118 (2021).

    Article CAS PubMed PubMed CentralGoogle Scholar

  • Rademaker, L. Spin-orbit coupling in transition-metal dichalcogenide heterobilayer flat ribbons. physics Rev B 105195428 (2022).

    Article ADS-CAS Google Scholar

  • Pan H, Xie M, Wu F & Sarma SD Topological phases in AB-stacked MoTe2/WSe2: e.g2 topological insulators, Chern insulators and topological charge density waves. physics Rev. Lett. 129056804 (2022).

    Article ADS CAS PubMed Google Scholar

  • Devakul, T. & Fu, L. Quantum anomalous Hall effect from inverted charge transfer gap. physics Rev X 12021031 (2022).

    CAS Google Scholar

  • Varma, CM Mixed Valed Compounds. Rev. Mod. Phys. 48219-238 (1976).

    Article ADS-CAS Google Scholar

  • Gu, J. et al. Dipolar excitonic insulator in a moiré lattice. nat. physics 18395-400 (2022).

    Article CAS Google Scholar

  • Zhang, Z. et al. Correlated interlayer exciton insulator in monolayer WSe heterostructures2 and Moiré-WS2/WSe2. nat. physics 181214-1220 (2022).

    Article CAS Google Scholar

  • Fallahazad, B. et al. Shubnikov-de Haas oscillations of high mobility holes in monolayer and bilayer WSe2: degeneracy at Landau level, effective mass and negative compressibility. physics Rev. Lett. 116086601 (2016).

    Article ADS PubMedGoogle Scholar

  • Kadowaki, K. & Woods, S.B. Universal relationship between resistivity and specific heat in heavy fermionic compounds. Solid state comm. 58507-509 (1986).

    Article ADS-CAS Google Scholar

  • Kitagawa, S. et al. Metamagnetic behavior and Kondo collapse in heavy fermion CeFePO. physics Rev. Lett. 107277002 (2011).

    Article CAS PubMed Google Scholar

  • Present, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. nat. physics 4186-197 (2008).

    Article CAS Google Scholar

  • Mak, KF, Xiao, D. & Shan, J. Light-valley interactions in 2D semiconductors. nat. Photon. 12451-460 (2018).

    Article ADS-CAS Google Scholar

  • Löhneysen, HV, Rosch, A., Vojta, M. & Wölfle, P. Fermi-Liquid Instabilities in Magnetic Quantum Phase Transitions. Rev. Mod. Phys. 791015-1075 (2007).

    Article ADS Google Scholar

  • Paschen, S. et al. Development of the Hall effect over a quantum critical point with heavy fermions. Nature 432881-885 (2004).

    Article ADS CAS PubMed Google Scholar

  • Burdin, S., Georges, A. & Grempel, D.R. Kondo lattice coherence scale. physics Rev. Lett. 851048-1051 (2000).

    Article ADS CAS PubMed Google Scholar

  • Sarma, SD & Liao, Y. Know the Enemy: 2D Fermi Liquids. ann. physics 435168495 (2021).

    Article MathSciNet MATH Google Scholar

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342614-617 (2013).

    Article ADS CAS PubMed Google Scholar

  • Zhang, R., Koutsos, V. & Cheung, R. Elastic properties of suspended multilayer WSe2. appl. physics Latvian. 108042104 (2016).

    Article ADS Google Scholar

  • Sun, Y. et al. Elastic properties and fracture behavior of biaxially deformed polymorph MoTe2. Nano Lett. 19761-769 (2019).

    Article ADS CAS PubMed Google Scholar

  • Leave a Reply

    Your email address will not be published. Required fields are marked *